br Ganesh S Shui X Craig KP
128. Ganesh S, Shui X, Craig KP, et al. RNAi-Mediated beta-Catenin Inhibition Promotes T Cell Infiltration and Antitumor Activity in Combination with Immune Checkpoint Blockade. Molecular therapy : the journal of the American Society of Gene Therapy. Nov 7 2018;26(11):2567-2579.
130. Jacobson ME, Wang-Bishop L, Becker KW, Wilson JT. Delivery of 5'-triphosphate RNA with endosomolytic nanoparticles potently activates RIG-I to improve cancer immunotherapy. Biomaterials science. Jan 29 2019;7(2):547-559.
131. Zhang YX, Zhao YY, Shen J, et al. Nanoenabled Modulation of Acidic Tumor Microenvironment Reverses Anergy of Infiltrating T Cells and Potentiates Anti-PD-1 Therapy. Nano letters. Apr 5 2019.
134. Smith TT, Stephan SB, Moffett HF, et al. In situ programming of leukaemia-specific T λCarrageenan using synthetic DNA nanocarriers. Nature Nanotechnology. 04/17/online 2017;12:813.
137. Tang L, Zheng Y, Melo MB, et al. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nature Biotechnology. 07/09/online 2018;36:707.
138. Zhang F, Stephan SB, Ene CI, Smith TT, Holland EC, Stephan MT. Nanoparticles That Reshape the Tumor Milieu Create a Therapeutic Window for Effective T-cell Therapy in Solid Malignancies. Cancer Research. 2018;78(13):3718-3730.
139. Sakurai Y, Mizumura W, Murata M, et al. Efficient siRNA Delivery by Lipid Nanoparticles Modified with a Nonstandard Macrocyclic Peptide for EpCAM-Targeting. Molecular pharmaceutics. Oct 2 2017;14(10):3290-3298.
140. Jenkins SV, Nima ZA, Vang KB, et al. Triple-negative breast cancer targeting and killing by EpCAM-directed, plasmonically active nanodrug systems. NPJ precision oncology. 2017;1(1):27.
141. Kucheryavykh YV, Davila J, Ortiz-Rivera J, et al. Targeted Delivery of Nanoparticulate Cytochrome C into Glioma Cells Through the Proton-Coupled Folate Transporter. Biomolecules. Apr 18 2019;9(4).
143. Kim K, Skora AD, Li Z, et al. Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proceedings of the National Academy of Sciences of the United States of America. Aug 12 2014;111(32):11774-11779.
144. Qian Y, Jin H, Qiao S, et al. Targeting dendritic cells in lymph node with an antigen peptide-based nanovaccine for cancer immunotherapy. Biomaterials. Aug 2016;98:171-183.
145. Ou W, Thapa RK, Jiang L, et al. Regulatory T cell-targeted hybrid nanoparticles combined with immuno-checkpoint blockage for cancer immunotherapy. Journal of controlled release : official journal of the Controlled Release Society. Jul 10 2018;281:84-96.
ACCEPTED MANUSCRIPT
146. Smith TT, Stephan SB, Moffett HF, et al. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nature nanotechnology. Aug 2017;12(8):813-820.
147. Moffett HF, Coon ME, Radtke S, et al. Hit-and-run programming of therapeutic cytoreagents using mRNA nanocarriers. Nature communications. Aug 30 2017;8(1):389.
150. Zheng Y, Tang L, Mabardi L, Kumari S, Irvine DJ. Enhancing Adoptive Cell Therapy of Cancer through Targeted Delivery of Small-Molecule Immunomodulators to Internalizing or Noninternalizing Receptors. ACS nano. Mar 28 2017;11(3):3089-3100.
151. Nagy-Simon T, Tatar AS, Craciun AM, et al. Antibody Conjugated, Raman Tagged Hollow Gold-Silver Nanospheres for Specific Targeting and Multimodal Dark-Field/SERS/Two Photon-FLIM Imaging of CD19(+) B Lymphoblasts. ACS applied materials & interfaces. Jun 28 2017;9(25):21155-21168.
152. Krishnan V, Xu X, Kelly D, et al. CD19-Targeted Nanodelivery of Doxorubicin Enhances Therapeutic Efficacy in B-Cell Acute Lymphoblastic Leukemia. Molecular pharmaceutics. Jun 1 2015;12(6):2101-2111.
153. Myers DE, Yiv S, Qazi S, et al. CD19-antigen specific nanoscale liposomal formulation of a SYK P-site inhibitor causes apoptotic destruction of human B-precursor leukemia cells. Integrative biology : quantitative biosciences from nano to macro. Aug 2014;6(8):766-780.
155. Jiang S, Wang X, Zhang Z, et al. CD20 monoclonal antibody targeted nanoscale drug delivery system for doxorubicin chemotherapy: an in vitro study of cell lysis of CD20-positive Raji cells. International journal of nanomedicine. 2016;11:5505-5518.
156. Nevala WK, Butterfield JT, Sutor SL, Knauer DJ, Markovic SN. Antibody-targeted paclitaxel loaded nanoparticles for the treatment of CD20(+) B-cell lymphoma. Scientific reports. Apr 5 2017;7:45682.
157. Chen X, Zhang Z, Yang S, Chen H, Wang D, Li J. All-trans retinoic acid-encapsulated, CD20 antibody-conjugated poly(lactic-co-glycolic acid) nanoparticles effectively target and eliminate melanoma-initiating cells in vitro. OncoTargets and therapy. 2018;11:6177-6187.
158. Yu B, Mao Y, Bai LY, et al. Targeted nanoparticle delivery overcomes off-target immunostimulatory effects of oligonucleotides and improves therapeutic efficacy in chronic lymphocytic leukemia. Blood. Jan 3 2013;121(1):136-147.